Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ting Wai Lee, Jasmine Po Kwan Lau and Lap Szeto*

Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China

Correspondence e-mail: Iszeto@hkucc.hku.hk

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.044$
$w R$ factor $=0.048$
Data-to-parameter ratio $=8.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

4,4'-Trimethylenedipyridinium dinitrate

In the title compound, $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2}^{2+} \cdot 2 \mathrm{NO}_{3}^{-}$, the cation is the diprotonated form of $4,4^{\prime}$-trimethylenedipyridine. There are intermolecular hydrogen bonds and $\pi-\pi$ interactions between the pyridinium moieties of the cation and nitrate anions.

Comment

4,4'-Trimethylenedipyridine (bpp) is a commonly employed bridging ligand in metal-organic coordination chemistry (Belcher et al., 2002; Tong et al., 2002). A salt of the monoprotonated form of bpp has been prepared and characterized (Wheatley et al., 1999), but no structure of the diprotonated form $\left(\mathrm{bppH}_{2}^{2+}\right)$ has been reported. We report here the crystal structure of the nitrate salt of bppH_{2}^{2+}, (I), which was obtained as a by-product in the course of attempts to prepare a coordination polymer by reaction of bpp and $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$.

(I)

The structure determination of (I) reveals the presence of one bppH_{2}^{2+} and two NO_{3}^{-}ions. The $\mathrm{bppH} \mathrm{H}_{2}^{2+}$ ion adopts approximately an anti-anti conformation for the trimethylene group (Fig. 1). This conformation is thermodynamically most favourable, since it minimizes intramolecular steric hindrance. The planes of the pyridine rings of the bppH_{2}^{2+} ion are nearly orthogonal to the plane containing the trimethylene C atoms. The dihedral angles between the plane of the trimethylene group and those of the two pyridine rings are 89.8 (3) and $83.5(3)^{\circ}$. This orthogonality increases the efficiency of stacking of bppH_{2}^{2+} ions. $\pi-\pi$ interaction between the nitrate ions and the pyridine rings are observed. Both the NO_{3}^{-}ions sit below and nearly parallel to the pyridine rings of the bppH_{2}^{2+} ion. Nitrate atom N 3 is under the N 1 -pyridine ring, with a dihedral angle of $5.2(3)^{\circ}$. Similarly, nitrate atom N4 is under the N 2 -pyridine ring, making a dihedral angle of 2.2 (3) ${ }^{\circ}$. There are intermolecular hydrogen bonds between the pyridinium moieties of the bppH_{2}^{2+} ion and NO_{3}^{-}ions (Table 1 and Fig. 2).

Experimental

In an attempt to prepare a coordination polymer, $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ $(0.429 \mathrm{~g}, 1.072 \mathrm{mmol})$ and bpp $(0.071 \mathrm{~g}, 0.358 \mathrm{mmol})$ were dissolved in methanol (5 ml). By slow evaporation of the solution at room temperature, crystals of the title compound, (I), of considerable size (ca 0.5 mm) formed after six weeks.

Received 22 April 2003
Accepted 1 May 2003
Online 16 May 2003

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{NO}_{3}{ }^{-}$
$M_{r}=324.29$
Monoclinic,,$P 2_{1} / c$
$a=7.894(6) \AA$
$b=21.037(4) \AA$
$c=9.879(6) \AA$
$\beta=112.39(4)^{\circ}$
$V=1516.9(16) \AA^{3}$
$Z=4$

Data collection

AFC-7R diffractometer $\omega / 2-\theta$ scans
Absorption correction: none
2966 measured reflections
2761 independent reflections
1718 reflections with $I>1.5 \sigma(I)$
$R_{\text {int }}=0.019$

Refinement

Refinement on F
$R=0.044$
$w R=0.048$
$S=1.46$
1718 reflections
209 parameters
H -atom parameters constrained
$w=1 /\left[(\sigma)^{2}\left(F_{o}\right)+0.00025\left(F_{o}\right)^{2}\right]$
$D_{x}=1.420 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=13.5-16.6^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, yellow
$0.28 \times 0.19 \times 0.15 \mathrm{~mm}$
$\theta_{\text {max }}=25.0^{\circ}$
$h=0 \rightarrow 9$
$k=0 \rightarrow 25$
$l=-11 \rightarrow 10$
3 standard reflections every 250 reflections intensity decay: 3.0%

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O}^{1}{ }^{\text {i }}$	0.87	2.58	3.182 (4)	127
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O} 2^{\text {i }}$	0.87	1.93	2.730 (3)	153
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O} 5^{\text {ii }}$	0.87	1.96	2.825 (4)	170
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O}^{\text {ii }}$	0.87	2.43	3.084 (4)	133
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 4^{\text {i }}$	0.95	2.40	3.324 (4)	164
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 6^{\text {iii }}$	0.95	2.55	3.409 (4)	151
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 5^{\text {iv }}$	0.95	2.41	3.094 (4)	129
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 1^{\text {i }}$	0.95	2.59	3.200 (4)	123
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 3^{v}$	0.95	2.59	3.181 (4)	120
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O} 3^{v}$	0.95	2.51	3.142 (4)	124
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 2^{\text {iii }}$	0.95	2.54	3.225 (4)	129

Symmetry codes: (i) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (ii) $1-x, 1-y, 2-z$; (iii) $1-x, 1-y, 1-z$; (iv) $x, y, z-1$; (v) $1+x, y, 1+z$.

All H atoms were placed at geometrically calculated positions and refined as riding, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $\mathrm{N}-\mathrm{H}=0.87 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom).

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1992); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: TEXSAN; molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

We gratefully acknowledge financial support from the University of Hong Kong.

Figure 1
An ORTEPII (Johnson, 1976) drawing of the title compound, (I), with 50% probability ellipsoids, showing the crystallographic labeling scheme.

Figure 2
The packing diagram of (I), showing $\pi-\pi$ interactions and the hydrogenbonding interactions (as dashed lines) between the nitrate ions and the pyridine rings.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Belcher, W. J., Longstaff, C. A., Neckenig, M. R. \& Steed, J. W. (2002). Chem. Commun. pp. 1602-1603.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1992). TEXSAN and MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Tong, M.-L., Wu, Y.-M., Ru, J., Chen, X.-M., Chang, H.-C. \& Kitagawa, S. (2002). Inorg. Chem. 41, 4846-4848.

Wheatley, P. S., Lough, A. J., Ferguson, G. \& Glidewell, C. (1999). Acta Cryst. C55, 1486-1489.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

